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Abstract— In Real Time systems with cache, multiple tasks 
can share this common resource which can lead to cache-
related pre-emption delays (CRPD) being introduced. CRPD is 
the additional cost incurred from resuming a pre-empted task 
that no longer has the instructions or data it was using in 
cache, because the pre-empting task(s) evicted them from 
cache. It is therefore important to be able to account for 
CRPD when performing schedulability analysis. This research 
focuses on the effects of CRPD on a single processor system, 
further expanding understanding of CRPD and ability to 
analyse and optimise for it. It present new CRPD analysis for 
Earliest Deadline First (EDF) scheduling that significantly 
outperforms existing analysis, and then perform the first 
comparison between Fixed Priority (FP) and EDF accounting 
for CRPD. In this comparison,the effects of CRPD across a 
wide range of system and taskset parameters are explored and 
a new task layout optimisation technique that maximises 
system schedulability via reduced CRPD.  

Keywords—EDF,SCHEDULABILITY,DELAY,CPRD,PRE-
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1. INTRODUCTION
We are surrounded by embedded systems contained within 
larger devices, from medical pacemakers to the engine and 
control systems in large commercial aircraft. many of these 
embedded systems are also real-time systems that have 
specific deadlines that they must meet, and are often 
required to interact with an outside environment. it is 
therefore important that these real-time systems meet their 
temporal requirements, as well as being functionally correct. 
real-time systems can be categorised as soft and hard real-
time. a soft real-time system can tolerate a moderate 
number of deadline misses, at the expense of reduced 
quality of service, such as in a live video streaming system. 
in contrast, a deadline miss in a hard real-time system 
would constitute a failure of the system. some hard real-
time systems are also safety critical systems such that a 
deadline miss, and thus a system failure, could cause 
someone physical harm. most real-time systems are multi-
tasking systems built up of a number of individual tasks. to 
verify the temporal behaviour of a multi-tasking system, 
the execution time of each task must be determined, and 
then combined together with information about the 
scheduling policy to ensure that there are enough resources 
to run all of the tasks that make up the system. this is 
usually achieved by performing timing analysis on the 
individual tasks, and then schedulability analysis on the 
system as a whole. 

Cache Related Pre-emption Delays 
In a pre-emptive multi-tasking system with cache, 
when a task is pre-empted, cache-related pre-emption 
delays (CRPD) can be introduced. CRPD is the 
additional cost incurred from resuming a pre-empted 
task that no longer has the instructions or data it was 
using in cache, because the pre-empting task(s) 
evicted them from cache. CRPD will be incurred as 
the task uses data and invokes instructions during the 
remainder of its execution that were evicted by the 
pre-empting task(s). CRPD is not a fixed cost per pre-
emption, as is usually the case for traditional context 
switch costs, so simply subsuming an upper bound on 
the CRPD into the execution time of the pre-empting 
task could be very pessimistic. It is therefore 
important to accurately account for CRPD when 
performing schedulability analysis on a real-time 
system. There are techniques that can be used to 
reduce or completely eliminate CRPD, usually at the 
expense of increased task WCETs. For example, the 
cache can be partitioning so that each task has its own 
space in cache. However, Altmeyer et al. [3] recently 
noted that the increased predictability of a partitioned 
cache, in terms of eliminating CRPD, does not 
compensate for the performance degradation in the 
WCETs due to the smaller cache space per task. 

1.1 Real-Time Scheduling  
In real applications a system is usually built up of a number 
of tasks, collectively called a taskset. In addition to 
calculating the WCET of every task in isolation it is just as 
important to ensure that all the tasks, when running on the 
same platform and sharing resources, will meet their 
deadlines.  
A scheduling policy is used to determine which task in the 
taskset should run at any given point in time. Scheduling 
policies can be classified as either offline or online. Offline 
scheduling, often referred to as static cyclic scheduling, 
uses a pre-computed schedule with very low runtime 
overhead. Online scheduling does not generate a schedule 
in advance, and instead determines which task should run at 
runtime. Under offline scheduling, the pre-determined 
schedule ensures that the schedulability of the system is 
known in advance. Sporadic jobs are more difficult to 
accommodate, but can be served using spare capacity. 
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Some classical online scheduling policies include:  
� Fixed Priority (FP) [1] [2] - Fixed priority policy where 
tasks are allocated priorities offline and then scheduled 
according to those priorities at runtime . 

� Earliest Deadline First (EDF) [2] - Dynamic priority 
policy where jobs with earlier absolute deadlines are given 
higher priorities. As the priorities are based on absolute 
deadlines of the individual jobs, task priorities change 
dynamically over the course of the schedule.  

 

1.2 Schedulability Analysis  
We now briefly cover existing schedulability analysis for 
FP and EDF scheduling assuming context switch costs are 
constant and subsumed into the tasks’ execution times. 
 
FP Scheduling  
FP scheduling assigns each task a fixed priority which is 
then used as the priorities of the tasks’ jobs. Under FP 
scheduling the sets of tasks that can pre-empt each other are 
based on the statically assigned fixed task priorities. Using 
the fixed priorities, we can define the following sets of 
tasks for determining which tasks can pre-empt each other: 
hp(i) and lp(i) are the sets of tasks with higher and lower 
priorities than task τi, and hep(i) and lep(i) are the sets 
containing tasks with higher or equal and lower or equal 
priorities to task τi. 

The exact schedulability test for FP scheduling assuming 
constrained deadlines calculates the worst case response 
time for each task and then compares it to its deadline. The 
equation used to calculate Ri is : 

(a) 

Equation (a) can be solved using fixed point iteration. 
Iteration starts with the minimum possible response time, 
Under FP there are a number of techniques that can be used 
to assign the fixed priorities. Deadline Monotonic [1] 
assigns higher priorities to tasks with shorter deadlines. 
Rate Monotonic [2] assigns higher priorities to tasks with 
shorter periods. Audsley’s Optimal Priority Assignment 
(OPA) algorithm [14] takes a different approach. Using a 
greedy algorithm it evaluates the schedulability of each 
task, from lowest to highest priority, to devise an optimal 
priority for each task. It can be applied assuming the 
schedulability of a task meets certain conditions, such as 
not being dependent on the relative priority ordering of 
higher priority tasks. A drawback of OPA is that it selects 
the first schedulable priority assignment that it finds, which 
may result in a taskset that is only just schedulable. The 
Robust Priority Assignment (RPA) algorithm [8] improves 
on OPA by avoiding this drawback.  
Assuming negligible pre-emption costs, Leung and 
Whitehead [1] showed that Deadline Monotonic priority 
ordering is an optimal priority ordering for constrained 
deadline tasks which can have synchronous releases. Rate 
Monotonic is an optimal assignment for tasks with implicit 

deadlines [2], and OPA can generate an optimal assignment 
for tasks with arbitrary deadlines and periodic tasksets with 
offset release times . 
 
EDF Scheduling 
In 673, Liu and Layland [2] gave an exact schedulability 
test that indicates whether a taskset is schedulable under 
EDF if and only if (iff) , under the assumption that all tasks 
have implicit deadlines (Di = Ti). In the case where Di ≠ Ti 
this test is still necessary, but is no longer sufficient.  
Assuming negligible pre-emption costs, in 141 Dertouzos 
[4] proved EDF to be optimal among all scheduling 
algorithms on a uniprocessor. In 14, Leung and Merrill [5] 
showed that a set of periodic tasks is schedulable under 
EDF iff all absolute deadlines in the period [0,max{si}+ 
2H] are met, where si is the start time of task τi, min{si}=0, 
and H is the hyperperiod (least common multiple) of all 
tasks periods.  
In 690 Baruah et al. [6], [7] extended Leung and Merrill’s 
work [5] to sporadic tasksets. They introduced h(t), the 
processor demand function, which denotes the maximum 
execution time requirement of all tasks’ jobs which have 
both their arrival times and their deadlines in a contiguous 
interval of length t.  

(b) 
 
1.3 Real-Time Systems and Cache  
There are a number of features in modern processors that 
improve the average case performance, but make analysis 
of systems difficult due to the uncertainty that they 
introduce. These performance enhancing features include 
caches, pipelines, branch predication and out-of-order 
execution. When performing timing analysis they must be 
accounted for as they can affect the execution time of the 
basic blocks of code depending on what has been executed 
previously. Furthermore, in a pre-emptive multi-tasking 
system a pre-empting task can affect the execution time of 
a pre-empted task by altering the state of these hardware 
features, for example by evicting the contents of the cache. 
In this thesis we focus on analysing the effects caused by 
caches in real-time systems using pre-emptive multi-
tasking. 
Caches are small fast memories which are used to speed up 
access to frequently used blocks that reside in main 
memory, either RAM or permanent storage such as 
EPROM. CPU caches are either split into instruction and 
data caches, or combined into a unified cache. 
Figure. a shows a simplified representation of a CPU, 4KB 
of cache and 4MB of EPROM that could be found in an 
embedded system. Only a small percentage of the data or 
instructions from memory can be stored in the cache at any 
point in time, but accesses to the cache require significantly 
fewer cycles. If the instruction or data resides in cache, then 
accessing it will result in a cache hit, if not, it will result in 
a cache miss and the instruction or data must be fetched 
from memory first. 
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Figure .a - Layout of the CPU, Cache and EPROM 

Memory showing relative size and access times 
 
Caches provide a predictable, but almost chaotic 
performance boost. Provided the current state of the cache 
is known, whether the next access will result in a hit or a 
miss can be calculated. However, it can be very difficult to 
keep track of the contents of the cache. Accessing data 
which is in the cache will always be faster than accessing 
data from memory. However, under some scenarios the 
time taken to execute a set of instructions that are in cache 
can even be slower than when the instructions are not 
in cache. This is referred to as a timing anomaly and is 
caused when other hardware features interact and result in 
additional blocks having to be loaded from the cache. This 
makes the ability to classify if a fetch will result in a hit or 
a miss even more important [12]. One solution is to simply 
disable the cache. However, as the demands of embedded 
systems increase it becomes increasingly cost ineffective to 
keep caches disabled as they can provide such a significant 
performance increase ]. It is therefore important to be able 
to analyse systems with cache in order to verify todays’ 
embedded systems.  
Many aerospace systems partition different software 
systems so that they cannot interfere with each other. As 
caches are shared amongst everything running on a 
processor this is a cause for concern. CAST-7 [9] 
investigated caches in aerospace systems. In particular, it 
noted that “cache memory should receive special scrutiny 
in a partitioned system because the cache mechanism is not 
aware of the address partitioning architecture” [9]. This is a 
concern as the partitions are supposed to ensure that tasks 
in one partition do not affect another. However, as caches 
are not aware of the partitioning tasks in one partition can 
evict instructions and data belonging to a task in a different 
partition. This in turn can then affect the execution time of 
the other task, despite them being separated.  
Another problem with cache and predicting its behaviour is 
that an empty cache is not always the worst case. For 
example, when the write back policy is being used on a 
data cache, blocks have to be written back to memory 
before they can be evicted.  
An additional case where an empty cache is not the worst 
case is the domino effect [8]. The domino effect describes a 
situation where a repeating pattern of instructions cause the 
cache to transition through a number of states without 
converging. This could occur when a loop repeatedly calls 
a number of functions/instructions that are laid out in 
memory in a specific way. Due to the initial state and 
replacement policy, the cache does not end up in a 
consistent state, which means a different number of cache 
misses can occur on each loop iteration. Due to this effect, 
it must be assumed that the worst case number of cache 
misses occur on every iteration of the loop.  

These factors combine together to make our ability to 
accurately analyse caches very important when verifying 
the temporal behaviour of real-time systems. 

 
1.4 Timing Analysis  
In order to determine if a taskset is schedulable when 
running on a multi-tasking system, it is essential to know 
how long each of the tasks could take to execute. This is 
achieved by performing timing analysis on the tasks. 
Timing analysis methods can be classified into three types 
of analysis; static, measurement-based, and a combination 
of the two hybrid measurement-based analysis. Static 
analysis calculates the execution time for blocks using a 
model of the hardware. Measurement-based analysis 
executes the software on the target hardware and records 
execution time measurements. Hybrid measurement-based 
analysis combines the two. It determines the execution 
times by measuring small sections of code, and then 
calculates a bound on execution time based on the program 
structure obtained using static analysis and the collected 
measurements. While this thesis does not focus on timing 
analysis, we present a brief review of the literature as it 
forms the basis for later work on the cache analysis 
required by CRPD analysis.  
 
1.5 Static Analysis  
Static WCET analysis aims to calculate an upper bound on 
the WCET by statically calculating what the execution time 
for each block of code will be, and then combining them 
together to find the worst-case path (WC path) through the 
code.  
 

II INITIAL WORK 
Early work on static WCET analysis was driven by the 
seminal paper by Puschner and Koza in 689 [13]. In [13], 
Puschner and Koza used source code to try to calculate an 
upper bound on the maximum execution time of tasks. 
Calculating an estimate for the WCET of an arbitrary 
program reduces to the Halting problem [11]. It was 
therefore apparent from the onset that a number of 
restrictions would have to be placed on the code in order to 
facilitate estimation by bounding the execution time. Some 
of those restrictions such as not using GOTOs and not 
having unbounded loops and recursive procedures are still 
present in today’s techniques. In order to add additional 
information to the source code a number of high level path 
description constructs were defined. These were based on C 
like syntax and include things such as the ability to specify 
the maximum number of iterations for loops using bounds, 
and markers for dealing with multiple paths through loops. 
They proposed a set of formula, or timing schema, that 
could be used to combine together execution times for 
simple language constructions, assuming the execution 
time for them could be obtained. For example the execution 
time for a sequence of statements is the sum of the 
execution times for each statement. A downside of this 
approach is that it requires modifying the source code in 
ways  such as replacing standard loops with their modified 
bounded  versions. 
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2.1WCET Analysis Processes  
Modern static WCET analysis uses IPET to express the 
analysis problem as an ILP that is solved by maximising an 
objective function to find the path with maximal length. 
The execution times of basic blocks are determined using 
very detailed and accurate hardware. There are different 
approaches that can be used to find and combine all the 
required information, but it is usually broken down into the 
following phases [14] . Reconstruction of the call graph 
(CG) and control flow graph (CFG), architecture modelling 
broken down into pipeline analysis and cache analysis, and 
value analysis. Finally, path analysis, which is the process 
of generating and solving an ILP, to compute the path 
through the program that maximises the execution time. 

 
Figure .C - WCET analysis process for a typical static analysis 

tool 
 
2.2 Cache Related Pre-emption Delays  
When a pre-emption occurs there is a mandatory delay 
introduced by the need to save the state of the current task, 
decide which task to switch to, and then setup the new task. 
This delay is known as the context switch cost (CSC). As 
this is a fairly constant cost, it can usually be upper 
bounded and then subsumed into the execution time of the 
pre-empting task. In other words, in order to perform 
schedulability analysis on a taskset, the execution time of 
each task in the system is inflated by a bound on the time 
taken by the scheduler/operating system to switch to and 
then back from a task.  
In a system with cache after a pre-emption occurs there can 
be additional costs due to interferences on the cache which 
affect the pre-empted task(s). This is known as cache-
related pre-emption delay (CRPD) and it cannot simply be 
subsumed into the execution time of the pre-empting task 
without potentially  introducing significant pessimism. This 
is because CRPD is dependent on the pre-empting and pre-
empted tasks and the point of pre-emption. Specifically, it 
is incurred when a pre-empted task resumes and no longer 
has the instructions or data that the task was using in cache, 

because the pre-empting task(s) evicted them from cache. It 
is therefore difficult to determine the exact CRPD because 
the delay will not be incurred at once. Instead, CRPD will 
be incurred as the task uses data and invokes instructions 
that were evicted by the pre-empting task(s) during the 
remainder of its execution. In addition to being highly 
variable, CRPD can be significantly larger than CSC. In a 
study of a large multicore platform, Bastoni et al. [15] 
found the CSC to be around 5-10μs in the worst case, with 
variation being down to the number of tasks and scheduling 
policy which would not be changed at runtime. In 
comparison, they found the worst-case pre-emption costs to 
be much greater and more varied than the CSC, specifically 
they varied between 1-1300μs depending on the cache 
usage and system load. Figure C shows an example pre-
emption with a small amount of CSC occurring when 
switching tasks and a large amount of CRPD spread out 
during the execution of a task after being pre-empted. 

 
Figure D. Illustration of the effects of a pre-emption. CSC are 

incurred when switching tasks, and pre-emption delays are 
incurred during the remainder of a tasks execution after pre-
emption as it accesses blocks that were evicted from cache 

during the pre-emption 
 
As noted, the CSC is fairly constant and can be upper 
bounded and is therefore usually subsumed into the 
execution time of the pre-empting task. Figure E shows a 
revised version of Figure D with the CSC replaced by an 
increase to the execution time of task τ1. 
 

 
Figure E - Illustration of how the CSC can be subsumed into 
the execution time of the pre-empting task when compared to 

Figure D 
 
2.3 CRPD Analysis for FP Scheduling  
In this section, we review existing approaches for 
calculating CRPD when performing schedulability analysis 
for FP scheduling. To account for the CRPD when 
determining the schedulability of a taskset, a component is 
introduced into the response time analysis equation for FP, 
equation (a) , where represents the cost of a single pre-
emption of task τi by task τj. This gives a revised equation 
for Ri as:  

(b) 
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2.4 CRPD Analysis for EDF Scheduling  
In this section, we review an existing approach for 
calculating CRPD when performing schedulability analysis 
for EDF scheduling. The EDF scheduling always schedules 
the job with the earliest absolute deadline first. Assuming 
negligible pre-emption costs, it is an optimal scheduling 
algorithm for a single processor. Any time a job arrives 
with an earlier absolute deadline than the current running 
job, it will pre-empt the current job. When a job completes 
its execution, the EDF scheduler chooses the pending job 
with the earliest absolute deadline to execute next. In the 
case where two or more jobs have the same absolute 
deadline, we assume the scheduler always picks the job 
belonging to the task with the lowest unique task index, see 
Figure F This has the benefit of minimising the number of 
pre-emptions. In the case where two task jobs have the 
same absolute and relative deadlines, it ensures that they 
cannot pre-empt each other. Furthermore, it ensures that 
after a pre-emption, the task that was pre-empted last 
is resumed first. 

 
Figure F. Example schedule showing how the scheduler 
chooses which task should execute. Task τ3 is released at t = 
0. At t = 5, task τ2 is released, pre-empting τ3 as although it 
has the same absolute deadline, it has a lower task index. At t 
= 6, task τ1 is released, pre-empting task τ2. At t = 7, τ1 
completes, the scheduler then chooses to resume task τ2 as 
although it has the same absolute deadline as task τ3, it 
has the lower task index. 
 

III CONCLUSION 
The main contribution of this paper is a number of 
approaches for calculating cache related pre-emption delay 
(CRPD) in hierarchical systems with a global non-pre-
emptive scheduler and a local pre-emptive fixed priority 
scheduler. This is important because hierarchical 
scheduling has proved popular in industry as a way of 
composing applications from multiple vendors as well as 
re-using legacy code. However, unless the cache is 
partitioned, these isolated applications can interfere with 
each other, and so inter-component CRPD must be 
accounted for, even if the cache is flushed after each global 
context switch. 
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